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COMPARISON BETWEEN THEORY AND EXPERIMENT FOR WINGS AT
SUPERSONIC SPEEDS*

By WarTeER G. VINCENTI

SUMMARY

In this paper, a eritical comparison is made between. exper-
imental and theoretical results for the aerodynamic char-
deteristios of wings at supersonic flight speeds. As a prelimi-
nary, a brief, nonmathematical review is given of the basic
assumptions and general findings of supersonic wing theory
in two and three dimensions. Published data from two-di-
mensional pressure-distribution tests are then used to illus-
trate the effects of fluid viscosity and to assess the accuracy
of linear theory as compared with the more exact theories
whick are available in the two-dimensional case. Finally,
an account is presented of an NACA study of the over-all
force characteristics of three-dimensional wings at super-
sonic speed. In this study, the lift, pitching moment, and
drag characteristics of several families of wings of varying
plan form and section were measured in the wind tunnel
and compared with values predicted by the three-dimensional
ltinear theory. The regions of agreemens and disagreement
between experiment and theory are noted and discussed.

INTRODUCTION

The aerodynamics of wings at supersonic flight speeds is
currently the subject of much research and discussion. Asa
result of many recent investigations, based on the earlier
work of Prandtl, Ackeret, Busemann, and von Kfrmén, the
theory of the subject is well advanced, both as applied to
airfoil sections in two-dimensional flow and to complete,
three-dimensional wings. Experimental knowledge is, by
contrast, considerably less extensive, particularly with regard
to the three-dimensional case. There are, however, sufficient
experimental data in hand to permit a reasonably systematic
comparison between theory and experiment. It is the pur-
pose of this paper to present such a comparison insofar as the
current availability of experimental results will allow.

THEORETICAL CONSIDERATIONS

To provide background for those who are unacquainted
with the fundamentals of supersonic wing theory, it may be
useful to review briefly the assumptions and findings of work
in this field. (For a more complete discussion of the theory

and a bibliography of pertinent references, the reader is re-
ferred to the Tenth Wright Brothers Lecture by Theodore
von Kérmén, reference 1.)

In the solution of problems in supersonic wing theory, the
following assumptions are usually made concerning the flow
field which surrounds the wing:

(a) The fluid medium is continuous and homogeneous.

(b) The fluid has the thermodynamic characteristics of a
perfect gas with constant specific heats.

(e¢) Viscosity and thermal conductivity are vanishingly
small.

(d) External forces (such as gravity) are negligible.

For flight at ordinary altitudes and air temperatures, the

most drastic of these assumptions is that of vanishingly small
viscosity and thermal conductivity. This assumption allows
the effects of fluid friction and heat transfer to be disregarded
except as they are necessary to explain the existence of shock
waves and vortices within the flow field. The assumption
thus retains the essential features of supersonic flow as it is
known to occur away from the immediate vicinity of the wing
surface. It results, however, in the omission of the friction
drag and of any changes in pressure distribution caused by
growth or separation of the boundary layer.

On the basis of the foregoing assumptions, it is possible to
obtain explicit relations for the sudden changes in flow which
occur across a shock wave as well as a differential equation
for the gradual changes which take place in the regions
between such waves. When expressed with the geometrical
coordinates as the independent variables, the differential

equation governing the flow in the region between shock
waves is nonlinear. It is therefore difficult to apply rigor-

ously to most problems of practical interest.

Fortunately, in the special case of an airfoil section in a
two-dimensional supersonic stream, results can be obtained
with a high degree of mathematical rigor despite the non-
linearity of the governing differential equation. For reasons
of mathematieal practicality, it has been usual to restrict
the solutions to instances in which the local velocity in the
flow field is everywhere supersonic. This limits the solutions

to airfoils with & sharp leading edge and to angles of attack

and free-stream Mach numbers such that the shock wave from
the leading edge is attached to the airfoil and the flow on

tPaper presented at the Second Internationel Aeronautfcal Conference, Institufe of the Aeronautical Sclences and The Royal Aeronautical Society, New York
City, May 24-27, 1949. Supersedes NACA TN 2100, “Comparisen Between Theory and Experiment for Wings at Supersonle Speeds” by Walter G. Vincenti, 1930.
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the downstream side of the wave is supersonic. (It has also
been customary to neglect the rotation of the fluid partlcles
which will exist aft of the leading-edge wave in those cases in
which the wave is curved, although this approximation is
not essential.) Within t,hese restrictions, section character-
istics can be calculated to a high degree of precision for sec-
tions of even appreciable thickness. The method of computa-

tion reduces in practice to a stepwise application of the known -
relations for the compression through & shock wave and for.

the expansion around a convex corner. The procedure has
therefore been termed the “shock-expansion” method (see,
for example, reference 2). For rapid calculations, more
restricted methods, such as Ackeret’s linear theory (references
8 and 4) and Busemann’s second-order. theory (references
5, 6, and 7), can be obtained by means of series approxima-
tion to the complete equations for the shock wave and the
expansion. o o
In the more practical case of a complete three-dimensionel
wing, the general mathematical problem is forbiddingly
complex, and it is necessary to simplify the nonlinear dif-
ferential equation at the outset in order to obtain a solution,
To accomphsh this, it is assumed that the local velocity at

all points in the flow field differs only slightly in magnitude

and direction from the velocity of the undisturbed stream.
This implies, in effect, that the thickness, camber, and angle
of attack of the wing are small. With, this approximation,
the complete, nonlinear differential equation reduces,
through the omission of terms of higher than the first order
in the flow disturbances, to a linear equation which can be
solved by established mathematical methods. On the basis
of this equation, an extensive body of theory has been for-
mulated covering a wide range of practical wings. For'the
present it will suffice to mention certain general concepts and

- results of this theory. Examples of specific caloulations will
be presented in the course of the later discussion.

A fundamental result of the linear theory, well known hy
now, is the concept of the Mach cone. According to this con-
cept, the effect of a given disturbance in a uniform super-
sonic stream is felt only within the interior of a circular cone
with vertex located at the point of the disturbance and axis
extending downstream parallel to the original flow. The
geometry of the cone is determined by the requirement that
the component. of free-stream velocity normal to the surface
of the cone is equal to the speed of sound in the undisturbed
stream. It follows that the semivertex angle of the cone is a
function of the free-stream Mach number only. These con-
siderations apply not only to the effects of an isolated dis-
turbance but to the region of influenceof each disturbance in
a distributed system as well.

The concept of the Mach cone has immediate implications
with regard to the aerodynamic problems of three-dimen-
sional wings. This is illustrated in figure 1, which shows
certain features of the flow over three flat lifting surfaces of
representative plan form. In the case of the rectangular
plan form A, for example, it follows from the concept of the
Mach cone that, to a first approximation, the effects of the

_ finite span are confined to the regions of the wing lying within
the cons from the leading edge.of each tip. The flow over

— — — Moch line
TRy Region of fwo-dimensional flow

[0 LY destribetion :
Fraure. 1.—Flat lifting surfaces in supersonic flow (llnear theory).

the remainder of the wing (shown shaded) is identical with
the two-dimensional flow over & wing of infinite span. On
the moderately swept plan form B, the flow over the shaded
regions is, by the same reasoning, unaffected by the presence
of either the tips or root of the wing. Within these regions
the flow can be treated as essentially two-dimensjonal by
evaluating the velocity and the deflection angle in the direc-
tion normal to the leadmg edge. On the highly swept plan
form G, all of the wing is within the fields of influence of the
root and tips, and no regions of purely two- dnnensmnel ﬁow
are to be expected.

Carrying these considerations a step farther, we may also
examine the effect which the relationshjp belween the plan
form and. the Mach cones has upon the chordwise lift dis-
tribution for the thres wings. On both wings A and B, where
the leading edge lies ahead of the Mach cones from the
corners of the plan form, the Mach number of the component
of free-stream velocity normal to the leading edge is greater
than one. . For reasons just examined, the lift distribution at
the spanwise stations for which it is shown will be the same
as the distribution over a flat 1ifting surface in a two-dimen-
sional supersonic stream. Characteristic feafures of this dis-
tribution are that the intensity of lift at the leading edge is
finite and has zero gradient in the chordwise dlrectlon Oun
plan form G, where the leading edge is swept behind the Mach
cone, the Mach number of the flow component normal to the
leading edge is less than one. It develops from the theory
that in this case the Iift distribution near the edge resembles
the theoretical distribution predicted by linear theory for a
flat lifting surface in a purely subsonic flow—that is, the lift
intensity tends to an infinite value at the leading edge and
drops off rapidly along the chord toward the trailing edge.

The foregoing differences in lift distribution provide one
example of a general principle, the significance of which was
first noted by R. T. Jones (reference 8). This principle,
which arises throughout the study of wings by the linear
theory, can be stated as follows: When the component of
free-stream velocity normal to a wing element (i. e., lead-
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ing edge, ridge line, or trailing edge) is greater than the
speed of sound, the theoretical flow in the vicinity of the
element has the essential character of the two-dimensional
supersonic flow about an element of the same geometric
type; similarly, when the velocity component normal to the
element is less than the speed of sound, the theoretical local
flow resembles that which prevails in the two-dimensional
subsonic case. Because of the utility of this general result,
it has become customary to describe the wing elements them-
selves as either “supersonic” or “subsonic.” To determine
which category an element occupies, it is obviously sufficient,
as in figure 1, to note whether it is swept ahead of or behind
the Mach cone. It is apparent that a wing element may
change from one classification to the other as its orientation
relative to the Mach cone is changed. This can be brought
about by variation in either the free-stream Mach number
or the geometry of the wing.

As a result of the inherent differences in the flow about
supersonic and subsonic elements, theoretical calculations for
three-dimensional wings indicate marked and interesting
changes in the flight characteristics with changes in Mach
number or wing geometry. By studying these effects, wing
shapes cen be found which afford optimum aerodynamic
characteristics for a given flight condition. The results of
such studies, indeed, provide a valuable guidance to the air-
craft designer. In anticipation of the experimental results
to be presented later, however, a word of caution is in order
here. As exemplified in figure 1, the differences in theoreti-
cal pressure distribution between a supersonic and subsonic
element may be characterized by large differences in chord-
wise pressure gradient. These differences may, in a real,
viscous medium, give rise to corresponding differences in
boundary-layer flow and hence to aerodynamic effects which
are beyond the scope of the inviscid theory. As a result,
the true variation of the wing characteristics with change in
Mach number or wing geomeiry may be considerably dif-
ferent from that predicted by the theory. The later experi-
mental results with regard to the drag of triangular wings
supply an excellent example of such an effect.

In anticipation of the experimental data, it should also be
pointed out that the concepts and results of the linear theory,
based as they are upon the assumption of small disturbances,
constitute only a first-order approximation to the truth even
for the supposedly inviscid gas. When disturbonces of
appreciable magnitude are considered, the previous concept
of a Mach cone traversing the entire flow field is no longer
tenable. On the contrary, a given disturbance in a super-
sonic stream is then confined, not to the interior of a cone,
but to the interior of some more complex surface whose shape
and position depend upon the magnitude of the disturbance
as well as upon other conditions in the general flow field. It
follows that the regions of influence of a wing tip or wing
root are not strictly as shown in figure 1, and the previous
distinction between a supersonic and subsonic element can-
not be applied without qualification. The ideas of the linear
theory with regard to pressure propagation, therefore,
should not be taken literally nor should deductions based
upon them be accepted without reservation.
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It is apparent from these brief theoretical considerations

that caleulations by the linear theory may be expected to fall ~

short of the truth for two primary reasons. Thess are

(a) the omission from the theory of all viscous phenomena,
and

(b) the theoretical assumption that the flow disturbances
are small,

The importance of these approximations cannot be assessed

at present from purely theoretical knowledge. Some in-
sight is provided, however, by the available experimental
results.

PRESSURE-DISTRIBUTION MEASUREMENTS IN TWO
DIMENSIONS

Tt is desirable to begin the comparison between theory and
experiment by examining some typical pressure-distribution
results for an airfoil section in a two-dimensional supersonic
stream. Because of the availability in the two-dimensional
case of theories of greater accuracy than the linear theory,
it is possible here to distinguish between the effects of vis-
cosity and the effects of the terms neglected through the as-
sumption of small disturbances.

A typical two-dimensional pressure distribution is given in
figure 2, which shows the calculated and measured results for
a 10-percent-thick, symmetrical, biconvex section af a Mach
number of 2.13 and an angle of attack of 10°. The local
pressure coefficient is plotted as a function of the chordwise
position on the airfoil, positive values being plotted below
the horizontal axis and negative values above. The theo-

retical pressure distributions given by the linear and shock- |
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expansion theories are shown by curves as noted. The indi-
vidual circles indicate experimental points obtained from
the results of Ferri (reference 9).

The data of figure 2 show that considerable accuracy is
geiped by going from the linear to the shock-expansion
theory. Over most of the airfoil section, the linear theory
predicts the correct sense for the pressure gradient, but the
quantitative agreement between the curve given by this
theory and the experimental points is poor compared with
the excellent check given by the shock-expansion method.
Over the rear 40 percent of the upper surface, neither of the
theories agrees with the trend exhibited by experiment.

The discrepancy between the theoretical pressure distribu-
tions calculated by the linear and shock-expansion theories is
of importance primarily for its effect. upon the chordwise
distribution of lift. Examination of figure 2 reveals that the
total lift of the section, as approximated by the area between
the curves for the upper and lower surfaces, is given almost
1deut1ca]1y by the two theories. This illustrates the fact that
in the two-dimensional case the higher-order terms neglected
in the linear theory have little effect upon the over-all lift of
the section. They do, however, serve to concentrate the lift
farther forward on the chord than the linear theory would
predict. This effect is essentially a consequence of the airfoil
thickness and diminishes as the thickness is reduced.

The failure of even the shock-expansion theory to predict
the pressure variation over the rear part of the upper surface
is due to shock-wave, boundary-layer interaction (reference
9). " In the idealized, inviscid fluid, the two-dimensional flow
over a lifting airfoil at supersonic speeds is characterized by
an oblique compression wave originating on the upper sur-
- fuce nt the trailing edge. In the real, viscous fluid, this flow
pattern is modified by an interaction between the oblique
wave and the viscous boundary layer on the airfoil surface.
The boundary layer separates from the upper surface some
distance forward of the trailing edge, with the formation of
a weak compression wave at the separation point and 2 con-
sequent increase in pressure between this point and the trail-
ing edge. There is, as a result, a noticeable loss of lift over
the rear of the airfoil.

The foregoing results, of course, imply certain deviations
of the true aerodynamic coefﬁments from the curves predicted
by the linear theory. For the reasons outlined, the higher-
order pressure effects neglected in the linear theory have
little influence upon the lift-curve slope, although they do
result in a relatively forward shift of the center of pressure
(or aerodynamic center). The interaction between the trail-
ing shock wave and the viscous boundary layer acts both to
decrease the lift-curve slope slightly and to displace the
center of pressure still farther forward. Viscous frietion,
the effects of whichk are not visible in the pressure distribu-
tion, tends to increase the true drag relative to the caleulated
value, though this tendency is opposed here by the unpre-
dicted increase in pressure near the trailing edge as the result
of the shock-wave, boundary-layer interaction. All of these
effects are apparent in the available force-test data for air--
foils in two-dimensional flow (references 9 and 10). As
will be seen, they are also observed in the results for three-
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dimensional wings, at least for those cases in which the wing
elements are predominantly supersonic.

FORCE TESTS IN THREE DIMENSIONS

The discussion to this point has been confined to theoretical
considerations and to a comparison between theoretical and
experimental results for a typical airfoil section in two-
dimensional flow. The remainder of the paper will be con-
cerned with a more general comparison between theory and
experiment for complete, three-dimensional wings.

The results upon which this comparison is based were ob-
tained in 1946 as part of an investigation of wing character-
isties conducted at the Ames Aeronautical Luboratory of the
NACA. The portion of the general investigation to be dis-
cussed here was concerned with force tests at supersonic
speeds of approximately 80 wing models chosen to cover a
wide range of geometric variables and to include examples
with both supersonic and subsonic wing elements. The ex-
perimental work was performed in the Ames 1- by 3-foot
supersonic wind tunnel No. 1, which is a continuous-flow,
closed-return tunnel of approximately 10,000 horsepower.?

The wing models were supported in the wind tunnel on a
slender. body of revolution mounted directly ahead of a three-
component, strain-gage balance as shown in figure 3. For
the majority of the models, the airfoil section taken in the
streamvise direction was a 5-percent—thlck isosceles triangle,
that is, a triangle with maximum thickness of 5 percent lo-
cated at midchord. This cambered section was chosen pri-
merily for ease of construction. The models were made of
hardened, ground tool steel with the leading and trailing
edges maintained sharp to less than a 0.00l-inch radius,
except for certain tests in which the leading edge was pur-
posely rounded. The suppert body, which was the same for
all models, was kept as small as possible consistent with the
requirement that it could be used with a wide range of plan
forms.

Because of the presence of the support body, the experi-
mental results to be presented apply, strictly speaking, to
wing-body combinations rather than to the wings alone. The
theoretical curves are, on the other hand, for simple, isolated
wings. A detailed examination of the interference prob-.
lem indicates that, for the particular body used here, 1he
effects of the body are small insofar as the lift and pitching
moment are concerned. The influence on minimum drag
may, however, be considerable. The measured values of the
minimum drag coefficient must therefore be regarded as of
primarily qualitative significance in comparison with theory.

Because of limitations of time and space, it is obviously
impossible in a paper of this kind to discuss more than a
small porfion of the results obtained in the investigation.
The date presented will therefore be chosen primarily for
their value in illustrating certain general ideas or typical
conclusions. This approach will result in the omission of

2 As with most experimental inveatigatlons, many people contributed to the
final results of the study. Particular credit Is due, however, to Jack N. Niglsen.
Milton D. Van Dyke, and Frederick H. Mattesor, who participated In the analy-
sis of the results, to Robert T. Madden, Richard Scherrer, and John A. Black-
burn, wgo conducted the wind-tunnel tests, and to Albert G. Oswald, who wans
in charge of the wind-tunnel instramentation.

»
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(2) Unswept wing.
{b) Swept wing..
FIeree 3.—Typleal wing models mounted on support body in Ames 1- by 8-foot
supersonic wind tunnel.

_ Iany interesting items dear to the heart of the experi-
mentalist, but it is hoped that an adequate over-all picture
of the significant results will emerge. In all of the figures
presented, the aerodynamic coefficients will be referred to
the plan form area of the wing, including that portion of
the plan form enclosed by the support body. All of the
results are for a free-stream Mbhch number of 1.58 and a
test Reynolds number, of 0.75 million based upon the mean
geometric chord of the wing. Unless stated otherwise, it
may be assumed that the results were obtained using models
with the cambered, isosceles-triangle section previously
described. '

In the discussion of the results, it is convenient to con-
sider first the lift and pitching moment, since these charac-

213637—53——490
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teristics depend primarily upon the distribution of normal

of drag, which depends upon the frictional forces as Well
will be deferred until later.

LIFT AND PITCHING MOMENT

According to the linear theory, the lift and pitching-
moment curves for any given wing are each a straight line.

At a given Mach number, the slope of the line depends solely

upon the plan form of the wing and is independent of the

camber and thickness. The intercept—that is, the angle of
zero Lift or the moment at zero lift—is a function of both the -
camber and the plan form, but is independent of the wing -

thickness. Only the slope of the curves will be discussed
here, since this is the characteristic of greatest pmctlcal
Importance.

Lift-curve slope—The nature of the agreement between
theory and experiment with regard to the lift-curve slope

. pressure over the surface of the wing. The consideration -

for unswept wings is illustrated in figure 4. Here d0r/deis -

plotted as a function of aspect ratio for a series of four
unswept wings having a common taper ratio of 0.5. The
wing corresponding to each test point is indicated by a small
gketch, which shows also the trace of the Mach cones from
the forwardmost point of the wing. On this and later figures,
the variation predicted by the linear theory is shown over
ag wide a range as is practicable on the basis of existing
computational methods.

The agreement between theory and experiment in figure
4 is seen to be excellent over the entire range of aspect ratios.
The exact coincidence for aspect ratios from 2 to 6 is, in fact,
too good to be absolutely true. It appears likely that the
secondary effects of viscosity and support-body mterference,

which must certainly be present in some degree, are com- -

pletely compensating for these wings. The decrease in lift-
curve slope observed both experimentally and.theoretically
at the low aspect ratios is caused by a loss of lift within the

Mach cones which originate at the leading edge of the wing

tips. As the aspect ratio is reduced, a greater and greater
percentage of the plan form is included within these Mach
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cones, with & resulting decresse in the lifting eﬁectaveness
of the wing.

The effect of wing sweep on the slope of the lift curve is
illustrated in figure 5. Here dC'z/d« is shown as a function
of the sweep angle at the midchord line for a seriesof seven
wings also of taper ratio 0.5. The unswept wing of this
series is identical with the aspect ratio 4 wing of the previous
figure. In the design of the swept wings, the aspect ratio
was meade to decrease as the cosine of the angle of sweep, since
wings of constant aspect ratio did not appear structurally
feasible. The sweep angles were chosen to provide repre-
sentative plan forms with both supersonic and subsonic lead-
ing and trailing edges. The wing of 48° sweepback was
designed to have its leading edge coincident with the Mach
cone, which hds a sweep angle of 49.2° at the test Mach num-
ber of 1.53. Since the sweep angle of these wings is specified
at the midchord line, a given swept-forward wing can be
obtained from the corresponding swept-back wing by a
simple reversal of the direction of motion.

The agreement between theory and experiment in figure 5
is almost exact over the range of sweep angles from 0° to 48°
sweepforward, the forwardmost limit of the theoretical
results. For all of the swept-back wings, the experimental
slopes fall consistently below the theoretical values by from
8 to 10 percent. In both the swept-back and swept-forward
direction, the experimental results exhibit a marked reduction
in dC1/de as the edges of the plan forin are swept increes-
ingly farther behind the Mach cone. This trend is predicted
by the theoretical curve in the swept-back case and would un-
doubtedly be confirmed for the swept-forward wings if com-
plete theoretical results were available? It is interesting to
note, incidentally, that the 43° swept-back wing, which has its
leading edge coincident with the Mach cone, shows no de-
parture from the general trend of the experimental results.

#¥or the range of sweep angles from 48° to 60°* sweepback, the shape of
the theoretical curve s somewhat approximate. Strictly spealking, small dis-
continuliies in the slope of the curve would be expected at approximately 48°
and 35° where the leading edge and tralling edge of the plan form. coincide,
reapectively, with the Mach cone. No attempt was made to determine these
discontinuities, the theoretical curve belng faired smoothly thromgh the
avallable calculated pointa,
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Fo or the range of sweep angles between +43° the theo-
retical curve of figure 5 is exactly symmetmcal about the
vertical axis. This means that, within this range, the theo-
retical lift-curve slope of a plan form of the present series is
unchanged by a reversal of the direction of motion, Similar
result has been obtained by several authors for other, more
general clasges of wings (see, for example, references 11
and 12), though the limits of generality have not, tu the
writer’s knowledge, been completely established.t The ¢b-
served departure of the experimental results from the theo-
retical symmetry may be due to differences in aeroelastic de-
formation between corresponding swept-forward and swept-
back wings or to asymmetry in the effects of other secondary
factors such as viscosity and support body interference.

To summarize, we may say that the agreement between
experiment and linear theory with regard to the lift-curve
slope of three-dimensional wings is satisfactory for most
practical purposes. In view of the situation previously
observed in the two-dimensional case, however, it ecannot Le
assumed that agreement in the infegrated lift implies com-
plete agreement in the details of the lift distribution.
~ Moment-curve slope.—Further indication that the details of
the flow over the wings are, as in the two-dimensional case,
somewhat different from the predictions of the linear theory
is given by the pitching-moment data. Figure 6 shows the
moment-curve slope as & function of aspeet ratio for the
series of unswept wings previously discussed. The moment
coefficient is here taken about the centroid of plan-form area,
with the mean aerodynamic chord as the reference length.
The moment-curve slope is thus an approximate measure of
the displacement of the aerodynamic center of the wing for-
ward of the centroid of area, expressed as a fraction of the
mean aerodynamic chord.

It can be seen from figure 6 that the linear theory predicts
a progressively forward digplacement of the aerodynamie
center as the aspect ratio is reduced. As in the case of the

¢ Bince the present paper was written, the theoretlcal result observed Liere

has been established with complete generality with regard to plan form b
Clinton E. Brown of The Langley Aeronautical Laboratory of the NACA.
Brown, Clinton E.: The Reverslbflity Theorem for Thin Alrfoils in Subsonle
and Supersonic Flow. NACA TN 1044, 1040.) According to Brown's proof_r
which is based upon previous work by 3Max M. Munk, the theoretical lift-cv
slope of a glven wing s, to the first order, Invariant with respect to a reversal
of the direction of motlon, Irrespective of the Mach number or shape of th-
plan form. )
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lift-curve slope, this veriation is due to the Ioss of lift which
occurs over the rear portion of the wing within the Mach
cones from the tips. The trend of the experimental values
is in agreement with the theoretical curve, but the forward
displacement is uniformly greater than the theory predicts.
The reason for this discrepancy becomes apparent if we
imagine the wing series of figure 6 to be extended to in-
definitely high aspect ratios. In the limit of infinite aspect
ratio, the flow over the wing would be purely two-dimen- .
sional, and the theoretical characteristics would be simply
those of the wing section. For the present isosceles-triangle
section, the values of dCn/dC . given by the linear and shock-
expansion theories are as indicated by the two horizontal
lines to the right.  The theoretical curve for the finite-span
wings, of course, approaches the linear section value as an
asymptote. If only nonviscous effects were important in the
experiments, the measured curve would be expected to ap-
proach the section value predicted by the shock-expansion
method. The fact that it seems to approach an asymptote
above this lafter value is consistent with the occurrence of
shock-wave, boundary-layer interaction near the supersonic
trailing edge as previously observed in the two-dimensional
results (fig. 2). We may thus infer that the discrepancy
between experiment and linear theory over the entire range
of aspect ratios is due to a combination of both higher-order
pressure effects and fluid viscosity.

The effect of sweep on the moinent-curve slope is shown in
figure 7 for the same series of wings used before. It is ap-
parent that here experiment and theory agree neither
quantitatively nor qualitatively. For the unswept wing, the
observed discrepancy can be accounted for as explained in
connection with figure 6. The disagreement in the variation
with angle of sweep is, however, difficult to reconeile on the
basis of present knowledge. In general, the effects of
boundary-layer separation may be'expected to have & major
influence on the moment characteristics of swept wings,

" particularly in those cases in which the wing elements are
predominately subsonic. The possible importance of the
higher-order pressure effects should not be overlooked, how-
ever. Ifcanbeshown from quite general considerations that
the calculation by the linear theory of the aerodynamic-center
position for any given wing is subject to a possible error of
the-same order of magnitude as the percent thickness of the
airfoil section. For this reason, the development of a rea-
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sonably general, second-order wing theory may prove essen-
tial to a complete understanding of the pitching-moment
problem.

DRAG

The calculation of wing drag by the linear theory leads to
a parabolic curve of drag versus lift. The value of the
minimum drag coefficient depends, for a given Mach number,
upon the thickness, camber; and plan form of the wing, whils
the lift coefficient at which the minimum oeceurs is a function
of the camber and plan form. The rise in drag as the lift
coefficient departs from that for minimum drag depends,
according fo the linear theory, upon the geometry of the plan
form only.

Minimum drag.—A typical illustration of the effect of
change in plan form on the minimum drag is given in figure
8, which shows the variation in minimum drag coefficient for
the previous series of swept wings. The theoretical curve
shown is for the pressure drag only—that is, no attempt has
been made to estimate the skin friction. Because of the
mathematical complications introduced by camber when the
edges of the wing are subsonic, it was not practicable here to
extend the theoretical curve beyond 43° in either direction.
Within these limits, the theoretical drag increases with in-
creasing sweep. Ixtension of the curve to'higher angles of
sweep would be expected to show a marked decrease in the
calculated drag, similar to the well-known results for un-
cambered wings swept behind the Mach cone. _

The experimental curve of figure -8 follows the general
trend indicated by theory. As the sweep increases from
zero in either direction, the measured drag first rises to a
maximum in the vicinity of the Mach cone and then de-
creases markedly with further increase in sweep. The large
decrease in drag obtained by sweeping the wing behind the
Mach cone has been observed by numerous investigators and
need not be enlarged upon here. TVhat is more interesting in
the present results is the failure of the experimental values
to rise as rapidly as does the theoretical curve in the lower
range of sweep angles. For the wings of 0° and =380° sweep,
the displacement of the experimental points above the theo-
retical curve is consistent with a reasonable allowance for
skin friction and support-body interference. For the wings
of =43° sweep, however, the experimental values are almost
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coincident with the theoretical. This result suggests that
the linear theory may be averly pessimistic regarding wing
drag when the Mach number no*mal to the wing elements is
neer unity. Support for this conjecture is found in the work
of Hilton and Pruden (reference 10), who report a similar
situation in two-dimensjonal tests of an airfoil section at
moderately supersonic speeds. It is likely that in both in-
stances the results are due to transonic effects which are be-
yond the scope of the linear theory. :

The symmetry of the curves of figure 8 is also Worthy
of note. It has been shown by several authors (see, for ex-
ample, references 1 and 12) that, to the order of accuracy
of the linear theory, the minimum pressure: drag of a wing
of any plan form is unchanged by a reversal of the direction
of motion, provided the wing section is without camber.
For cambered wings, the corresponding drag theorem is
probably less general with regard to.plan form, though,
as in the case of the lift-curve slope, the limits of generality
have not been defined. For the present wings, reversibility
is readily proven over the range of sweep angles between
+43°, As a result, the theoretical curve of figure 8 is, like
the corresponding curve for d€/d« in figure 5, exactly
symmetrical over this interval. In spite of the theoretical
result, however, the almost perfect symmetry of the experi-
mental curve of figure 8 comes as somewhat of a surprise.
It might be expected that secondary differences between cor-
responding swept-forward and swept-back wings would
cause an asymmetry here akin to that ohserved in the experi-
mental values of lift-curve slope.

The most interesting results with regard to drag, how-
ever, are concerned with the effects of thickness distribution
on the minimum drag of triangular wings. At about the
time the present study was beginning, theoretical results by
Puckett appeared (reference 13) which indicated that the
minimum pressure drag of an uncambered triangular wing
with a subsonic leading edge could be held to a relatively
low value by proper location of the position of maximum
thickness. To check these results, two trisngular wings of
aspect ratio 2 were included in the present study. Both
wings had an uncambered double-wedge section with a thick-
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ness ratio of 5 percent. In one case the maximum thickness
was located at midchord, in the other at & position 20 per-
cent of the chord aft of the leading edge.

The findings.for these wings are summarized in figure

9, which shows the theoretical and experimental values of the
minimum drag coefficient plotted as a function of the posi-
tion of maximum thickness. The curve of theoretical pres-
gure drag, which is representative of Puckett’s results, is
divided into two parts by a sharp break in slope, located in
this instance at 42 percent of the chord. TFor points to the
right of .this break, the ridge line defined by the position
of maximum thickness is supersonic, and the flow around
the ridge resembles the supersonic flow around a convex
corner. Under these conditions, there is little pressure
recovery over the rear of the wing, and the drag is relatively
high. For points to the left of the break, the ridge line is
subsonic, and the local flow is of the characteristically sub-
sonic type. Under these conditions, the pressure recovery
over the rear of the wing is considerable, and the drag is
correspondingly veduced. For the wings under considera-
tion, the net result of moving the maximum thickness for-
ward from the 50-percent to the 20-percent station is to reduce
the computed pressure-drag coefficient from 0.0092 to 0.0054.
Unfortunately, the measured values of the minimum drag,
indicated by the two small circles, do not follow the theo-
retical trend. The apparent effect of the forward displace-
ment is, in fact, to increase the drag slightly.

When this result was first noted, the experimental data
were suspected of being in error. Repeated tesls, however,
gave identical results. It was next thought that support-
body interference might be to blame. Estimates indicated,
however, that such interference could hardly account for the
large difference in the increments by which the measured
total drag exceeded the computed pressure drag for the two
wings. Consideration of the friction drag finally supplied
the key to a possible explanation. To examine this possi-
bility, curves of theoretical total drag were computed on

the basis of the skin-friction coefficients corresponding to

completely laminar and completely turbulent flow in the
boundary layer. When this was done, it was found, as is
apparent in the figure, that the experimental point for the
wing with maximum thickness at 50. percent fell midway
between the two resulting curves, while that for the wing
with maximum thickness at 20 percent was slightly above
the curve for completely turbulent flow. This suggested
that the failure of the experimental points to fullow the trend
of the theoretical pressure drag might be due to a difference
in the extent of laminar boundary-layer flow on the two
wings. '

To check this hypothesis, the liquid film method developcd
by Gray of the R.A.E. for the indication of transition at
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subsonic speeds (reference 14) was adapted for use in a

supersonic stream. This method depends upon the far + tial

the rate of evaporation of a film of liquid on the s irface of

a model is, on the average, greater where the bourdary lay er
is turbulent than where it is laminar. _ In applving this pt'-m-
ciple at the Ames Laboratory, the model is f-rst coated with
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(e)

(t)

(a) Maximum thickness af 20-percent chord.
(b) Maximum thickness at ¥0-percent chord.
F1eeRE 10.—Results of Iquid-flm tests on triangular wings at zero Mft.
Seetion : uncambered double wedge, S-percent thick, M,=1.58.

Bat black lacquer and then, immediately prior to installation
in the tunnel, with a liquid mixture containing glycerin. A
run is then made at the desired test condition for a sufficient
time to allow the liquid to evaporate completely in the turbu-
lenttregion but remain moist over most of the laminar area.
Upon removal from the tunnel, the model is dusted with
talecum powder, which adheres to the laminar but not to the
turbulent area. thus increasing the contrast for photographic
purposes and providing a clear indication of the extent of
the two types of boundary-layer flow.

‘The results of liquid film tests of the two triangular wings
at zéro lift are shown in figure 10. For the wing with maxi-
mum thjckness at midchord, the région of turbulent flow,
“fhiCh aPpears as the dark region on the model. constitutes
only about hqlf of the'surface atea aft of the ridge line. For
the wing with maximum thickness displiaced forward, the
turbulent region occupies almost all of the considerably
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larger area which is aft of the ridge line on this wing?
These results were repeated many times during the numerous
tests necessary to perfect the liquid-film technique.
amination of calculated pressure distributions for the two
wings shows in each case excellent correlation between the

experimentally determined region of turbulent flow and the

calculated region of adverse pressure gradient. Because of
the effects of support-body interference, it is not-possible to
make a decisive comparison between the measured values of

total drag and theoretical values calculated on the basjs of .

the observed areas of laminar and turbulent flow. The evi-
dence of the liquid-film tests, however, leaves little doubt as
to the primary resson why forward displacement of the
maximum thickness fails to produce the reduction in mini-
mum drag predicted by the inviseid, linear theory.

The foregoing result has important implications with re-

gard to the degree of drag reduction possible at supersonic
speeds through the use of sweepback. The relatively high
pressure drag of an unswept wing at speeds above the speed
of sound is a direct result of an absence of pressure recovery
over the rear of the wing. The high pressure drag is thus
associated with a chordwise pressure gradient which is, for
the most part, favorable to the boundary-layer flow. The
reduction of pressure drag by means of sweepback depends,
on the other hand, upon the presence of an apptreciable pres-
sure recovery, or in other words, upon the existence of a

region of adverse gradient. If the region of such gradient
_oceupies the major portion of the wing, then, as was seen In. __
the case of the triangular wing with thickmess forward, the

detrimental effects upon the skin friction may more than
offset the gains in pressure drag. This suggests that it may
be desirable here, as in the case of the subsonie, low-drag air-
foil. to look for wing shapes which have their pressure re-
covery confined tu a relatively small part of the wing area.
Wings of this type may, in fact, prove more practical at
supersonic than at subsonie speeds, since there is indication
(reference 15) that the boundary-layer phenomena at the

higher speeds may be more conducive to long runs of laminar

flow.

Drag rise and lift drag ratic.—The final questlon to be dis-
cussed is that of the variation in drag with change in lift.
As previously mentioned, the theoretical curve of drag Versus
lift 1s, for any given wing, parabolic in shape. The rise in
drag as the lift coefficient departs from that for minimum
drag depends, for a given Mach number, on the wing plan
form only and is independent of the camber and thickness.
The shape of the theoretical parabola for a given wing is
thus identical with that for a flat lifting surface of the same
plan form as the wing in question.

In the case of a plan form with a supersonic leading edge,
the determination of the rise of the theoretical parabola is
relatively simple. In this case, which is exemplified by plan
forms A and B of figure 1, the Iocal pressure on the flat lifting
surface is everywhere finite. The variation in drag with
change in lift can thus be found by simple integration of

$The white streaks extending back Into the otherwlse dark turbulent ares

are streamers of excess liguid blown back from the Iaminar region. These
streamers may at times be used 25 a valuable indication of the direction of
flow withln f.he boundary Iayer, particularly on highly ewept wings.

Ex-
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the pressures acting on the top and bottom of the surface.

For all of the wings of the present study having a supersonic
leading edge, the shape of the drag curve given by the theo-
retical calculation shows good agreement with experiment.

In the case of a wing with a subsonic leading edge, the
theoretical problem is more complex. In this case, exempli-
fied by plan form C of figure 1, there is a singularity—that
is, an infinite value—in the theoretlcal lift intensity at the
leading edge of the equivalent flat surface.
this singularity is to produce a finite suction force on the
leading edge in the direction opposite to the free stream.
This force—sometimes referred to simply as “leading-edge
suction”—reduces the rise of the theoretical drag parabold
below what it would be if only the pressures on the top and
bottom of the wing were considered. Actually, of course,

the details of the flow about the leading edge must, in any

real case, be considerably different from the representations
of the linear theory, since an infinite lift intensity is obvi-
ously impossible. It does not follow, however, that the theo-
retical forward force at the leading edge will not exist. The
situation here is much the same as that encountered at the
leading edge of an airfoil section in two-dimensional, incom-
pressible flow. In this latter case, it is known, both from
experiment and from the indications of more refined calcu-
lations, that the elementary theory gives an accurate predic-
tion of the leading-edge suction within certain limits of
angle-of-attack and leading-edge radius. The range of ap-
plicability of the linear theory as applied to swept wings at
supersonic speeds must similarly be established by careful
theoretical and experimental investigation.

The results of the present study are nof, in general, con-
clusive with regard to the conditions necessary for the at-
tainment of the theoretical force at the subsonic edge. The

data for the triangular wings, however, do offer some pos-

sibily significant findings. These are illustrated in figure
11, which shows the effects of change in wing section upon
the drag due ta lift for the triangular wings previously
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discussed. The two theoretical curves show the caleulated
drag rise with the leading-edge suction both included
and omitted. For the wing with maximum thickness at
midchord, the experimental curve is slightly above the theo-
retical curve with leading-edge suction omitted. This is as
might be expected for a sharp-edged wing,.the slight in-
crease above the upper theoretical curve being due possibly
to an increase in friction drag with increasing lift or to
Moving the maximum thick-
ness forward on the wing to the 20-percent-chord pesition
resulted in a slight reduction in drag despite the retention
of a sharp leading edge. This gain may be due either to
the attainment of leading-edge suction as a result of the
larger leading-edge wedge angle on this wing or to a change
in the variation of friction drag with lift. In an attempt

to bring the drag rise of the second wing down to the values
indicated by the complete theory, the edge of this wing was

rounded to a radius of 0.25 percent of the chord, which is
of the same order of magnitude as the radius of an NACA
low-drag section of comparable thickness ratio. This round-
ing of the leading edge afforded some benefit, the resulting
experimental values being approximately midway between
the two theoretical curves. Additional rounding—to a 0.50-
percent radius over the entire span and then to a still greater
value over the outer half—had no further effect.

The influence of the fmegomg changes on the experimental
curves of lift-drag ratio is shown in figure 12. The wing
with maximum thickness at midchord has _a value of
(L/D) ues of about 6.3. When the maximum thickness is

.moved forward to the 20-percent -chord station, th.e decrease

in drag rise apparent in figure 11 more than cutweighs the
slight inerease in minimum drag observed in figure 9. Asa
result, the maximum lift-drag ratio increases slightly.
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Rounding the leading edge of the second wing, while reduc-
mg the drag rise as previously noted, does not alter the
minimum drag. As a consequence, the maximum lift-drag
ratio is increased to approximately 6.8. These results sug-
gest that the aerodynamic gains predicted on the basis of
the theoretical leading-edge suction can be at least partially
realized in practice. The determination of the optimum
profile shape for this purpose may, however, involve con-
siderable detailed research.

It is interesting for contrast with the foregoing results to
point out the detrimental effects at the test Mach number of
rounding the leading edge or an unswept wing. In tests
of an unswept, untapered wing of aspect ratio 4, rounding
the leading edge to a radius of 0.25 percent of the chord
resulted in a 27-percent increase in minimum drag and a
consequent reduction in maximum lift-drag ratio from 6 to
about 5.5. The rise in the drag curve was unaffected by the
modification.

CONCLUDING REMARKS

The foregoing results represent only a small contribution
to the body of experimental and theoretical knowledge now
being accumulated concerning the characteristics of wings at
supersonic speeds. As is the case with most measurements of
over-all forces, the data of the present study raise more ques-
tions than they answer. Detailed and patient investigations
of pressure distribution and boundary-layer flow are required
to develop a rational explanation for many of the observed
phenomena. Several major problems have not been dis-
cussed here at all, including the Important question of the
adequacy of the Kutta condition to describe the real flow
at a highly swept, subsenic trailing edge. There is sufficient
to be done, indeed, to keep many investigators occupied for
Fears to come.

AxEs AERONATTICAL LABORATORY,
Natroxar Apvisory COANOTTEE FOR AERONATTICS,
Morretr FEw, Caror., May 3, 1950.
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